Variational methods are widely used in image processing. They allow us to propose models taking into account specificities of the tackled problems. They also enable the study of the properties of solutions. The proposed functional in image processing are not smooth (to account for the presence of interfaces) and not necessarily convex. This naturally raises questions of existence of solutions, uniqueness, and (fast) computation. The choice of the regularization is often based on an assumption of sparsity (eg, of the gradient, or in a transformed domain). Non-local interactions and the concept of patch are typically involved in the design of functional. Finally, all these approaches are based in principle on the weighting of the data fidelity term and the regularization term, which leads to the question of the reliable estimation of this parameter.
Category Archives: [:en]variational methods[:fr]méthodes variationnelles
Scale-Space and Variational Methods
The team organized early June 2015 the international conference SSVM 2015 (Scale-Space and Variational Methods in Image Processing) in the Arcachon bay. More than 120 researchers from around the world participated. The conference proceedings were published in a book by Springer.