Archives de catégorie : [:en]software[:fr]logiciels

Estimation non paramétrique du bruit

Afin de fournir un algorithme de débruitage automatique, nous avons développé une méthode automatique d’estimation du bruit dans une image, basée sur la détection non paramétrique des zones homogènes. Les régions homogènes de l’image sont détectées à l’aide du coefficient de corrélation de rang de Kendall [1]. Evalué sur des séquences de pixels voisins, il permet de mesurer la dépendance entre voisins et donc la présence de structure au sein d’un bloc de l’image.
Ce test est non paramétrique, donc la performance du détecteur est indépendante de la distribution statistique du bruit. Une fois les zones homogènes détectées, la fonction de niveau de bruit, c’est-à-dire la fonction reliant la variance du bruit à l’intensité sous-jacente de l’image, est estimée sous forme d’un polynôme du second degré à l’aide de la minimisation de l’erreur \ell^1 des statistiques issues de ces régions homogènes.

Codes Matlab pour l’estimation de bruit

Publications associées :

– C. Sutour, C.-A. Deledalle et J.-F. Aujol. Estimation of the noise level function based on a non-parametric detection of homogeneous image regions. Submitted to Siam Journal on Imaging Sciences, 2015.

– C. Sutour, C.-A. Deledalle et J.-F. Aujol. Estimation du niveau de bruit par la détection non paramétrique de zones homogènes. Submitted to Gretsi, 2015.

Références

[1] Buades, A., Coll, B., and Morel, J.-M. (2005). A review of image denoising algorithms, with a new one. Multiscale Modeling and Simulation, 4(2): 490–530.

Régularisation adaptative des NL-means

L’algorithme de débruitage mis en place repose sur une régularisation adaptative de l’algorithme des NL-means [1]. Le modèle proposé est le suivant :

(1)   \begin{align*} u_{\text{TVNL}} &= \underset{u \in \mathbb{R}^N}{\operatorname{argmin}} \sum_{i \in \Omega} \lambda_i \left(u_i-u^{\text{NL}}_i\right)^2 + \text{TV}(u),\\ \lambda_i &= \gamma \left(\frac{\sigma_{\text{residual}}(i)}{\sigma_{\text{noise}}(i)}\right)^{-1} = \gamma \Big(\sum_j w_{i,j}^2\Big)^{-1/2}. \end{align*}

u_{\NL} est la solution obtenue par l’algorithme de NL-means, TV désigne la variation totale de l’image et w_{i,j} est le poids qui mesure la similarité entre le patch d’indice i et le patch d’indice j dans l’algorithme des NL-means. Le rapport \left(\frac{\sigma_{\text{residual}}(i)}{\sigma_{\text{noise}}(i)}\right)^{-1} traduit la réduction de la variance du bruit assurée par les NL-means. Cette formulation permet de régulariser localement et de façon adaptative la solution u_{\NL} obtenue par les NL-means, en se basant sur un indice de confiance \lambda_i qui traduit la qualité du débruitage effectué par les NL-means.

Ce modèle s’adapte aux différentes statistiques de bruit de la famille exponentielle (Gaussien, Poisson, multiplicatif…). Il est également adapté au débruitage vidéo grâce à l’utilisation de patchs 3D combinée à une régularisation TV spatio-temporelle.

Codes Matlab pour RNL

Résultats et comparaisons de débruitage de vidéos avec R-NL

Publications asosciées :
– C. Sutour, C.-A. Deledalle et J.-F. Aujol. Adaptive regularization of the NL-means : Application to image and video denoising. IEEE Transactions on image processing, vol. 23(8) : 3506-3521, 2014.

– C. Sutour, J.-F. Aujol, C.-A. Deledalle et J.-P. Domenger. Adaptive regularization of the NL-means for video denoising. International Conference on Image Processing (ICIP), pages 2704–2708. IEEE, 2014.

– C. Sutour, J.-F. Aujol et C.-A. Deledalle. TV-NL : Une coopération entre les NL-means et les méthodes variationnelles. Gretsi, 2013.

Références

[1] Buades, A., Coll, B., and Morel, J.-M. (2005). A review of image denoising algorithms, with a new one. Multiscale Modeling and Simulation, 4(2): 490–530.

Stein Unbiased GrAdient estimator of the Risk

Les algorithmes de régularisation variationnelle résolvant des problèmes inverses mal posés impliquent généralement des opérateurs qui dépendent d’un ensemble de paramètres continus. Lorsque ces opérateurs bénéficient d’une certaine régularité (locale), ces paramètres peuvent être sélectionnés en utilisant l’estimateur non-biasé de Stein (SURE). Bien que cette sélection est généralement effectuée par une recherche exhaustive, nous abordons dans ce travail le problème de l’utilisation du SURE pour l’optimisation efficace d’une collection de paramètres continus du modèle. Lorsque l’on considère des regularizations non lisses, comme la norme l1 populaire correspondant au seuillage doux, le SURE est une fonction discontinue de paramètres qui empêchent l’utilisation de techniques d’optimisation de descente de gradient. Au lieu de cela, nous nous concentrons sur une approximation du SURE sur la base de différences finies comme proposé dans (Ramani et al., 2008). Sous des hypothèses modérées sur l’estimateur, nous montrons que cette approximation est une fonction faiblement différentiables des paramètres et que son gradient faible (SUGAR), fournit asymptotiquement (par rapport à la dimension de données) une estimation non biaisée du gradient du risque. En outre, dans le cas particulier de seuillage doux, SUGAR est avéré être aussi un estimateur consistent. Le SUGAR peut alors être utilisé comme une base pour effectuer une optimisation de type quasi-Newton. Le calcul de SUGAR repose sur la forme explicite de la différenciation (faible) de la fonction non-lisse. Nous fournissons son expression pour une large classe de méthodes proximales itératives et appliquons notre stratégie à des régularisations impliquant des pénalités convexes non lisse. Des illustrations sur divers problèmes de restauration d’image et de complétion de matrices sont donnés.

Publications et codes sources associés :

Charles-Alban Deledalle, Samuel Vaiter, Gabriel Peyré and Jalal Fadili
Stein Unbiased GrAdient estimator of the Risk (SUGAR) for multiple parameter selection,
Technical report HAL, hal-00987295 (HAL)

MATLAB source codes available from GitHub.

NL-SAR: Non-Local framework for (Pol)(In)SAR denoising

Logiciel ouvert distribué sous licence CeCILL pour l’estimation adaptative et non-locale d’images (Pol)(In)SAR (réduction de speckle). Interface disponible en ligne de commande, IDL, Matlab, Python et en tant que bibliothèque dynamique C. Plug in pour PolSARpro disponible.

Téléchargement ici